![]() |
|
![]() |
#1 |
Member
Join Date: Mar 2005
Location: Australia
Posts: 685
|
![]()
Hi Jeff (Pringle),
Thanks for your very informative post, to which I can add nothing of significance. Any chance of a rough translation of that most interesting article, just to get the gist of it? And as someone who has had a fair bit to do with Wootz, could you shed some light on its historical heat treatment as uncovered by modern research, is such information exists? Cheers Chris |
![]() |
![]() |
![]() |
#2 |
Member
Join Date: Feb 2006
Posts: 637
|
![]() |
![]() |
![]() |
![]() |
#3 |
Member
Join Date: Dec 2004
Location: B.C. Canada
Posts: 473
|
![]()
Thank you Chris and Jeff.
Excellent explanation guys but, I think I may be missing something here. Is the central core wootz or crucible steel (on the real deals)? Just so that I am on the same page, my understanding is that wootz is crucible steel with a surface pattern, correct? Why would tempering crucible steel be any different then forged or case hardened steel? Tempering wootz would obviously be a much bigger problem if the surface pattern is to be maintained. I have posted the picture of what I believe to be a temper line with an intact (but altered) surface pattern, to show that it could and was done. Thanks guys! Jeff |
![]() |
![]() |
![]() |
#4 | |||
Member
Join Date: Mar 2005
Location: Australia
Posts: 685
|
![]()
Hi Jeff (D),
I have no first hand experience with Wootz, so I was hoping that Jeff Pringle or someone else would help us out. So what follows is really based on reading the works of others and reasoning back from firsts principles. If I am in error, others can correct me. Quote:
Quote:
The microstructure of forged Wootz, a very high carbon steel, in the unhardened condition consists of pearlite (0.8%C) plus the rest of the carbon in the form of iron carbides. In this state, Wootz can be hard enough to render a sword serviceable, but IMO barely so. To attain a really hard edge, hardening by quenching is required, but this is problematic. Conventional hardened steel consist of converting the pearlite to austenite by heating and then this austenite is rapidly cooled (quenched) to transform it into martensite (hardened steel). If we only had pearlite to deal with, as in the case of conventional steels, there would be no great problem. However with Wootz, once the pearlite is heated and converts into austenite, the iron carbides tend to dissolve in it, raising its carbon content beyond 0.8% C. Upon quenching the austenite with the now elevated carbon content transforms into a very brittle form of martensite plus iron carbide that precipitates out of solid solution, all intermixed with some of the austenite that failed to transform (weak and soft), known as retained austenite. Whilst hard this is a bad microstructure from the point of view of strength and toughness. There is more to it, but this is a basic summary. Quote:
In all my readings on Wootz, the question of heat treatment seems have received little attention, so we are left wondering. Yet to justify the legendary fame of many Wootz blades, they would have had to be hardened in some way or another. Cheers Chris |
|||
![]() |
![]() |
![]() |
#5 |
Vikingsword Staff
Join Date: Nov 2004
Posts: 6,348
|
![]()
I own this old wootz sword .
![]() http://www.oriental-arms.com/photos.php?id=1048 The pattern disappears where it seems to have been hardened (picture 2). |
![]() |
![]() |
![]() |
#6 | ||||
Member
Join Date: Nov 2005
Posts: 189
|
![]() Quote:
Quote:
The Metallurgy of some indian swords Alan Williams, David Edge Gladius, Vol XXVII (2007):149-176 http://gladius.revistas.csic.es/inde...e/view/102/103 There is the theory that there was no need to harden wootz, since you just wanted very tough pearlite carrying those extra-hard carbides to the target, but since all the contemporary descriptions of wootz sword making include a quench, and since many swords look like they have a hardened edge, I suspect that theory is another modern misinterpretation based on too little info. Current experimentation reveals that water quenching is risky (well, we knew that already! ![]() ![]() Quote:
![]() Quote:
The guts of the Swedish article: Metallographic analysis of inlays in a Viking Sword, inv. nr. SHM 907 The blade is made up of several layers of varying carbon content, an almost carbon-free central layer with several weld joints marked by slag streaks, surrounded by two outer layers with higher carbon content. The central layer, which is built of 10-12 layers, consisting of relatively coarse-grained ferrite with small pearlite at grain boundaries, carbon content of less than 0.1%. The side layers are also layered and consist of one side of pure pearlite (carbon 0.8%) that is very fine-grained and finely laminated. The second side has lower carbon content, 0,4-0,6%; and consists of a powdery mixture of ferrite and perlite. The edge is badly corroded but seems to be the layer with the highest carbon content. The inlay is almost entirely carbon-free, with coarse grains of ferrite. The cross-section is nearly trapezoidal and divided by a corrosion streak, which is probably a slag line between two twisted wires (Figure 3). The two threads show in their internal structure traces of stratification. The inlay is likely to consist of two twisted iron wires, probably containing phosphorous, which were forged down the fuller in the blade prior to the final processing to finished shape. |
||||
![]() |
![]() |
![]() |
#7 |
Member
Join Date: Mar 2005
Location: Australia
Posts: 685
|
![]()
Hi Jeff (Pringle),
Great post and many thanks for that most informative article in gladius, which I speed-read and yet have to go over several times so as to digest its contents. It would seem that the better blades were hardened by heat treatment. Cheers Chris |
![]() |
![]() |
![]() |
|
|