Ethnographic Arms & Armour
 

Go Back   Ethnographic Arms & Armour > Discussion Forums > European Armoury
FAQ Calendar Today's Posts Search

Reply
 
Thread Tools Search this Thread Display Modes
Old 5th January 2009, 12:29 PM   #1
Chris Evans
Member
 
Join Date: Mar 2005
Location: Australia
Posts: 685
Default

Hi Jeff (Pringle),

Thanks for your very informative post, to which I can add nothing of significance. Any chance of a rough translation of that most interesting article, just to get the gist of it? And as someone who has had a fair bit to do with Wootz, could you shed some light on its historical heat treatment as uncovered by modern research, is such information exists?

Cheers
Chris
Chris Evans is offline   Reply With Quote
Old 5th January 2009, 04:43 PM   #2
ward
Member
 
Join Date: Feb 2006
Posts: 637
Default

Happy new year

Little different direction in this article
http://www.physorg.com/news150373962.html
ward is offline   Reply With Quote
Old 5th January 2009, 10:58 PM   #3
Jeff D
Member
 
Jeff D's Avatar
 
Join Date: Dec 2004
Location: B.C. Canada
Posts: 473
Default

Thank you Chris and Jeff.

Excellent explanation guys but, I think I may be missing something here. Is the central core wootz or crucible steel (on the real deals)? Just so that I am on the same page, my understanding is that wootz is crucible steel with a surface pattern, correct? Why would tempering crucible steel be any different then forged or case hardened steel?
Tempering wootz would obviously be a much bigger problem if the surface pattern is to be maintained. I have posted the picture of what I believe to be a temper line with an intact (but altered) surface pattern, to show that it could and was done.

Thanks guys!
Jeff
Jeff D is offline   Reply With Quote
Old 6th January 2009, 03:04 PM   #4
Chris Evans
Member
 
Join Date: Mar 2005
Location: Australia
Posts: 685
Default

Hi Jeff (D),

I have no first hand experience with Wootz, so I was hoping that Jeff Pringle or someone else would help us out. So what follows is really based on reading the works of others and reasoning back from firsts principles. If I am in error, others can correct me.


Quote:
Originally Posted by Jeff D
Thank you Chris and Jeff.
Excellent explanation guys but, I think I may be missing something here. Is the central core wootz or crucible steel (on the real deals)? Just so that I am on the same page, my understanding is that wootz is crucible steel with a surface pattern, correct?
My understanding is that the term Wootz and crucible steel are synonymous because Wootz was made in crucibles, so it is a crucible steel.

Quote:
Why would tempering crucible steel be any different then forged or case hardened steel? Tempering wootz would obviously be a much bigger problem if the surface pattern is to be maintained.
I am not sure that I understand your question, but if you mean why is the hardening of Wootz by a process of quenching problematic then this explanation may be of help:

The microstructure of forged Wootz, a very high carbon steel, in the unhardened condition consists of pearlite (0.8%C) plus the rest of the carbon in the form of iron carbides. In this state, Wootz can be hard enough to render a sword serviceable, but IMO barely so. To attain a really hard edge, hardening by quenching is required, but this is problematic.

Conventional hardened steel consist of converting the pearlite to austenite by heating and then this austenite is rapidly cooled (quenched) to transform it into martensite (hardened steel). If we only had pearlite to deal with, as in the case of conventional steels, there would be no great problem. However with Wootz, once the pearlite is heated and converts into austenite, the iron carbides tend to dissolve in it, raising its carbon content beyond 0.8% C. Upon quenching the austenite with the now elevated carbon content transforms into a very brittle form of martensite plus iron carbide that precipitates out of solid solution, all intermixed with some of the austenite that failed to transform (weak and soft), known as retained austenite. Whilst hard this is a bad microstructure from the point of view of strength and toughness. There is more to it, but this is a basic summary.

Quote:
I have posted the picture of what I believe to be a temper line with an intact (but altered) surface pattern, to show that it could and was done.
One way around the above described problem would be to harden only the edge, so that the unhardened spine of the blade would provide the necessary strength and toughness that the blade requires. This would counter the negative traits of the hardened section.

In all my readings on Wootz, the question of heat treatment seems have received little attention, so we are left wondering. Yet to justify the legendary fame of many Wootz blades, they would have had to be hardened in some way or another.

Cheers
Chris
Chris Evans is offline   Reply With Quote
Old 6th January 2009, 04:45 PM   #5
Rick
Vikingsword Staff
 
Rick's Avatar
 
Join Date: Nov 2004
Posts: 6,348
Arrow Hardened ?

I own this old wootz sword .
http://www.oriental-arms.com/photos.php?id=1048

The pattern disappears where it seems to have been hardened (picture 2).
Rick is offline   Reply With Quote
Old 6th January 2009, 05:32 PM   #6
Jeff Pringle
Member
 
Jeff Pringle's Avatar
 
Join Date: Nov 2005
Posts: 189
Default

Quote:
a rough translation of that most interesting article, just to get the gist of it
My guesstimate is at the end of this post. The sword was made in a very similar way to the one analyzed by Edge & Williams, the main difference is the steel edge consisting of pearlite in the Swedish sword, not martensite. This might be due to a lack of hardening at time of manufacture, but it could also indicate that the sword went through a cremation burial which erased its heat treatment. Since the swords are so similar, I’ll presume they are both genuine +ULFBERHT+s and go with the latter.

Quote:
could you shed some light on its historical heat treatment as uncovered by modern research, if such information exists?
This has always been a problem, not enough data on the old swords, but this recent article is a good start – Heat treated wootz/crucible steel has a significant edge over regular steel in hardness…
The Metallurgy of some indian swords
Alan Williams, David Edge
Gladius, Vol XXVII (2007):149-176
http://gladius.revistas.csic.es/inde...e/view/102/103

There is the theory that there was no need to harden wootz, since you just wanted very tough pearlite carrying those extra-hard carbides to the target, but since all the contemporary descriptions of wootz sword making include a quench, and since many swords look like they have a hardened edge, I suspect that theory is another modern misinterpretation based on too little info. Current experimentation reveals that water quenching is risky (well, we knew that already! ), that you can erase none, some or all of the pattern depending on the specific alloy and how you austenitize (heat before the quench) the blade, and that hardened and unhardened wootz respond to the etch differently, so yes, those weird lines that show up in the old swords & knives are evidence of heat treating. I’ll attach some fotos of quenched blades, from 1% to 1.9% Carbon. Lower carbon and the martensite grabs all the carbon, banding disappears, higher carbon and you get martensite studded with banded carbides. I recently bought an Indian wootz sword that was hardened at the edge in the area of the center of percussion, but don’t have a photograph of it (yet! )

Quote:
Little different direction in this article
Better than the Guardian, but I suspect there’s still some misinterpretation going on. Yesterday I received a confirmation that the Williams article is on its way, so soon I’ll be able to compare all three!

Quote:
wootz is crucible steel with a surface pattern, correct?
Wootz is hypereutectoid crucible steel with a pattern, you need to be over 0.8% Carbon to get the carbides.

The guts of the Swedish article:
Metallographic analysis of inlays in a Viking Sword, inv. nr. SHM 907
The blade is made up of several layers of varying carbon content, an almost carbon-free central layer with several weld joints marked by slag streaks, surrounded by two outer layers with higher carbon content. The central layer, which is built of 10-12 layers, consisting of relatively coarse-grained ferrite with small pearlite at grain boundaries, carbon content of less than 0.1%. The side layers are also layered and consist of one side of pure pearlite (carbon 0.8%) that is very fine-grained and finely laminated. The second side has lower carbon content, 0,4-0,6%; and consists of a powdery mixture of ferrite and perlite. The edge is badly corroded but seems to be the layer with the highest carbon content.
The inlay is almost entirely carbon-free, with coarse grains of ferrite. The cross-section is nearly trapezoidal and divided by a corrosion streak, which is probably a slag line between two twisted wires (Figure 3). The two threads show in their internal structure traces of stratification. The inlay is likely to consist of two twisted iron wires, probably containing phosphorous, which were forged down the fuller in the blade prior to the final processing to finished shape.
Attached Images
   
Jeff Pringle is offline   Reply With Quote
Old 7th January 2009, 01:24 AM   #7
Chris Evans
Member
 
Join Date: Mar 2005
Location: Australia
Posts: 685
Default

Hi Jeff (Pringle),

Great post and many thanks for that most informative article in gladius, which I speed-read and yet have to go over several times so as to digest its contents. It would seem that the better blades were hardened by heat treatment.

Cheers
Chris
Chris Evans is offline   Reply With Quote
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT +1. The time now is 10:01 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2025, vBulletin Solutions Inc.
Posts are regarded as being copyrighted by their authors and the act of posting material is deemed to be a granting of an irrevocable nonexclusive license for display here.