Ethnographic Arms & Armour
 

Go Back   Ethnographic Arms & Armour > Discussion Forums > Ethnographic Weapons
FAQ Calendar Today's Posts Search

Reply
 
Thread Tools Search this Thread Display Modes
Old 7th June 2016, 10:24 AM   #1
Roland_M
Member
 
Roland_M's Avatar
 
Join Date: Aug 2014
Location: Germany
Posts: 525
Default

I have two additional pictures.

The picture with the red arrow clearly shows signs of a lamination process.

The other picture looks like that the dagger is differential hardened.

The blade is much too perfect for the first few footsteps with a completely new technology.


Roland
Attached Images
  
Roland_M is offline   Reply With Quote
Old 7th June 2016, 11:01 AM   #2
A. G. Maisey
Member
 
Join Date: May 2006
Posts: 7,133
Default

Please accept my apologies Timo.

I was wrong.

My comments were based upon what I have seen made from meteoritic material by modern knifemakers, I wasn't even thinking of use in ancient times, I do know that it was used, but have not studied its use in ancient times.

Still, based upon my own experience in working with meteoritic material, which is not inconsiderable, I do find it very difficult to believe it can successfully cold forged --- but I suppose it does depend upon the meteorite.

Just a thought Timo:- are we talking about cold forging, or cold work?

I've just a done quick scan of the material you have supplied links to, and although I have picked up "cold work", I have not yet seen "cold forge". Cold forging means that you work the material at a black heat, in other words you bring it to a red heat, let the material lose its heat until it is black, then you work it with a hammer until it is cold. This technique is sometimes used to pack the edge of a blade.

"Cold work" means bringing the material to the shape required by cutting or grinding.
A. G. Maisey is offline   Reply With Quote
Old 7th June 2016, 04:12 PM   #3
David
Keris forum moderator
 
David's Avatar
 
Join Date: Aug 2006
Location: Nova Scotia
Posts: 7,261
Default

Quote:
Originally Posted by A. G. Maisey
I've just a done quick scan of the material you have supplied links to, and although I have picked up "cold work", I have not yet seen "cold forge". Cold forging means that you work the material at a black heat, in other words you bring it to a red heat, let the material lose its heat until it is black, then you work it with a hammer until it is cold. This technique is sometimes used to pack the edge of a blade.

"Cold work" means bringing the material to the shape required by cutting or grinding.
At the bottom of the page in the summary on Timo's second link the term they use is not "cold work", but "cold hammering".
"...the examples make it clear that i) iron meteorites may be forged at red heat to nails, horseshoes, hinges, swords, crowbars ploughshares, etc. to maximize weighs of a few kilograms ii) iron meteorites may be cold hammered to arrowheads, knives and other small objects with a maximum weight of a few tens of grams iii) massive iron meteorites have served as anvils for generations. Many of these have survived to our day and may be studied in various museums iv) iron meteorites do corrode in the terrestrial envirionment at the same rate as wrought iron..."
The body of the text around figure 10 on this last link talks repeatedly about the work being shaped by "cold hammering". I don't know if this is the same as "cold forging", but it doesn't sound like simple stock removal to me.
David is offline   Reply With Quote
Old 7th June 2016, 04:41 PM   #4
Roland_M
Member
 
Roland_M's Avatar
 
Join Date: Aug 2014
Location: Germany
Posts: 525
Default

Quote:
Originally Posted by David
I don't know if this is the same as "cold forging", but it doesn't sound like simple stock removal to me.

I'm sure it is not the same. Cold hammering means imho (!) the improving of the cutting edge of a finished bronze sword to increase the cutting performance. This work will be done either without or just a tiny bit of deformation.

It is absolutely impossible to forge cold iron. One can hammering the steel until it is hot, but one cannot forge steel at room temperature! Otherwise one would destroy the crystalline structure of the steel or iron.

One can cut a blade like structure from a meteroid, grinding and cold hammering the edge a little bit. But this have nothing to do with forging!
Roland_M is offline   Reply With Quote
Old 7th June 2016, 08:00 PM   #5
David
Keris forum moderator
 
David's Avatar
 
Join Date: Aug 2006
Location: Nova Scotia
Posts: 7,261
Default

Quote:
Originally Posted by Roland_M
It is absolutely impossible to forge cold iron. One can hammering the steel until it is hot, but one cannot forge steel at room temperature! Otherwise one would destroy the crystalline structure of the steel or iron.
I don't know enough to enter into a debate over this, but keep in ming that we are talking about iron, not steel here.
David is offline   Reply With Quote
Old 7th June 2016, 10:38 PM   #6
Nick Wardigo
Member
 
Nick Wardigo's Avatar
 
Join Date: Dec 2004
Location: Philadelphia, Pennsylvania, USA
Posts: 54
Default

When I first read about Tut's dagger, I was reminded of an old academic paper that I purchased at the Smithsonian Institute maybe 20 years ago: "Two Early Chinese Bronze Weapons with Meteoric Iron Blades"; Gettens, Clarke, and Chase; 1971. I have it in front of me; it still has the 99-cent price tag from when I discovered it in the Smithsonian's gift shop's discount bin. Not exactly a best-seller.

After a cursory search, I see it's available online:

https://www.asia.si.edu/research/dow...%20Weapons.pdf

The paper is very technical in places, but the upshot is that the Freer Gallery of the Smithsonian owns two weapons, a "broad axe" and a "dagger axe", both dating from circa 1000 BCE and incorporating both bronze and meteoric iron in their construction.

I realize Tut predates these weapons by about four centuries, but I find it interesting that two ancient cultures in different parts of the world, understood the importance of meteoric iron and learned how to incorporate it into their current technology.
Nick Wardigo is offline   Reply With Quote
Old 7th June 2016, 10:48 PM   #7
Timo Nieminen
Member
 
Timo Nieminen's Avatar
 
Join Date: Mar 2012
Posts: 422
Default

Quote:
Originally Posted by Roland_M
It is absolutely impossible to forge cold iron. One can hammering the steel until it is hot, but one cannot forge steel at room temperature! Otherwise one would destroy the crystalline structure of the steel or iron.
Put the iron on an anvil, and hit it with a hammer. If it is distorted past the plastic limit, you've changed its shape, and you can forge it. You have to hit it harder than if hot-forging, but it can be done.

I've done it; other people have done it. It is absolutely possible. A simple example: https://www.youtube.com/watch?v=N66-n3FJ5Vw

Quote:
Originally Posted by Roland_M
Otherwise one would destroy the crystalline structure of the steel or iron.
It isn't a single crystal; it's made up of many, hopefully very small, crystals. This kind of polycrystalline structure can be distorted, so it isn't an impossible problem. (This distortion of the crystal structure is how we can distinguish cold-forged objects from hot-forged objects.)

It does lead to work-hardening, which (if you don't stop and anneal the piece) will limit how much you can work it, especially how thin you can make it.

These two points (needs more force to deform, work-hardening) plus not being able to weld as part of the process are why, for general purpose forging, you hot-forge. But hot-forging generally being better doesn't mean that cold-forging is impossible. If you lack fuel, it might be the only option. If you can start with stock that doesn't need to be worked much to reach its final shape, then it can be a good option even today (forming steel cold in a metal press, panel beating, cold-peening rivets and sword tangs are examples of this).

I haven't tried cold-forging with annealing, so can't comment on effect from experience. In principle, it should work.

Cold-forging, with intermediate annealing, is the natural way that a redsmith/coppersmith who knows nothing of iron will try to forge iron, since it's the way that copper and copper alloys are forged.
Timo Nieminen is offline   Reply With Quote
Old 7th June 2016, 11:06 PM   #8
Timo Nieminen
Member
 
Timo Nieminen's Avatar
 
Join Date: Mar 2012
Posts: 422
Default

Quote:
Originally Posted by A. G. Maisey
Still, based upon my own experience in working with meteoritic material, which is not inconsiderable, I do find it very difficult to believe it can successfully cold forged --- but I suppose it does depend upon the meteorite.
For it to work, the meteorite needs the right range of chemical composition, and not too many defects/inclusions (which means corrosion can be a problem). Plenty of meteorites that will shatter if you try to hot-forge them, too.

Similar problems with cold-forging telluric iron. There are huge pieces of telluric iron in Greenland that weren't used for forging (useful as anvils, though), since high carbon content (they're basically cast iron in composition) makes the iron impossible to work (at least cold).

Quote:
Originally Posted by A. G. Maisey
Just a thought Timo:- are we talking about cold forging, or cold work?

I've just a done quick scan of the material you have supplied links to, and although I have picked up "cold work", I have not yet seen "cold forge". Cold forging means that you work the material at a black heat, in other words you bring it to a red heat, let the material lose its heat until it is black, then you work it with a hammer until it is cold. This technique is sometimes used to pack the edge of a blade.
Buchwald uses "forge" to mean hot-forging, "cold-work" to include cold-forging, and "cold hammering" to mean cold-forging.

The Greenland iron is worked at room temperature, without being heated. In the modern experiments reported by Buchwald and Mosdal (pg 18), the temperature never exceeded 50C (the piece being heated by the working). Room temperature, anvil and hammer.

Especially for small pieces of meteorite (and telluric iron), the forging was often a simple flattening to as thin a piece as feasible, with the cutting edge then sharpened by grinding. The telluric iron blades were usually still very small after flattening, and would be mounted along a support to produce a saw-like knife.

Last edited by Timo Nieminen; 8th June 2016 at 07:48 AM.
Timo Nieminen is offline   Reply With Quote
Old 8th June 2016, 12:52 AM   #9
Timo Nieminen
Member
 
Timo Nieminen's Avatar
 
Join Date: Mar 2012
Posts: 422
Default

Two questions:

Quote:
Originally Posted by Roland_M
The picture with the red arrow clearly shows signs of a lamination process.
Are you including iron repeatedly folded on itself (e.g., to remove slag, for homogeneity, etc.) in "laminated"? This would be normal if it's hot-forged. And since, apparently, it's not cold-forged like the other iron objects from the tomb, it's presumably hot-forged.

Laminated, in the sense of being welded together from different irons, is possible (and might explain why the 1995 XRF measurements gave a much lower nickel content - I should look where the recent XRF measurements were taken on the blade (it's in the supplementary material for the paper)).

Quote:
Originally Posted by Roland_M
The other picture looks like that the dagger is differential hardened.
Would you happen to know the carbon content of the blade? The recent XRF measurements appear to have included measurement of the carbon content, but that result isn't given in the paper (other than the statement of "minor quantities").

I'd be really surprised if the carbon content is high enough for differential hardening. A lamination line would be a more likely explanation.

Quote:
Originally Posted by Roland_M
The blade is much too perfect for the first few footsteps with a completely new technology.
Compared with other Egyptian iron-working of the time, yes, it's "too perfect". To me, this suggests foreign origin, or at least foreign worker(s).

Perhaps not a completely new technology. The Alacahöyük dagger (from Anatolia) is about 1000 years older than Tutankhamun's dagger. Too corroded to know if the workmanship is similar. High nickel -> meteoric iron.

https://commons.wikimedia.org/wiki/F...Alacahoyuk.jpg
Timo Nieminen is offline   Reply With Quote
Old 8th June 2016, 05:46 AM   #10
Bob A
Member
 
Join Date: Feb 2014
Posts: 455
Default

A few questions that are nagging at me:

Can iron be worked at room temperatures with tools that are softer than iron?

Does the heat-treating that any meteorite receives during its atmospheric entry have any consequences affecting its characteristics, that would not obtain in ordinary terrestrial iron?

I apologise in advance for my general ignorance of the subject at hand.
Bob A is offline   Reply With Quote
Old 8th June 2016, 07:40 AM   #11
Timo Nieminen
Member
 
Timo Nieminen's Avatar
 
Join Date: Mar 2012
Posts: 422
Default

Quote:
Originally Posted by Bob A
Can iron be worked at room temperatures with tools that are softer than iron?
Some types of cold-working are possible with soft tools (e.g., bending, dishing), but that requires starting with thin enough sheet. In general, you want tools (i.e., hammers and anvils) that are harder than iron. The Greenland solution was usually basalt (which is much harder than iron).

Quote:
Originally Posted by Bob A
Does the heat-treating that any meteorite receives during its atmospheric entry have any consequences affecting its characteristics, that would not obtain in ordinary terrestrial iron?
Probably not. The internal crystal structure doesn't appear to be affected by the fall. We don't know much about how hot they get during their fall. For a brief discussion, mostly of our ignorance, see http://curious.astro.cornell.edu/abo...h-intermediate
Timo Nieminen is offline   Reply With Quote
Old 8th June 2016, 11:51 AM   #12
A. G. Maisey
Member
 
Join Date: May 2006
Posts: 7,133
Default

After reading more from the sources that Timo has indicated, as well as a number of other on-line sources, I'm inclined to agree that a blade could be forged cold from meteoritic material, but with the qualification that the meteoritic material would need to be of the correct composition to permit this forging, and if only forging was to be used, the shape and size of the material would need to be very close to the finished article.

There can never be any dispute about the cold forging of simple blades from iron, or preferably mild steel, this is a standard blacksmithing technique.

A careful reading of the Buchwald & Mosdel link indicates that the material used in the Greenland blades was indeed capable of being cold hammered, and that it was quite thin in the first place, probably fragments that had split off from the main body of the meteorite.

In a previous post to this thread I used the term "stock removal". We usually tend to think of stock removal in the modern terms of files and mechanical grinders, but stock removal is actually the reduction of any large piece of material by cold removal of some of the original body of material. This can be achieved by splitting or by grinding with a stone or wet sand and wood.

The Buchwald & Mosdel work does seem to indicate that stock removal did take place, either by the splitting off of meteor fragments at the time of impact (spallation), or by the human agency of splitting off fragments.

It also seems that quite high temperatures were at least sometimes used (P.16).

Here is a link to another source that is well worth attention:-

http://www.ironfromthesky.org/?p=310

Once we understand that the composition of the meteorite used in the Greenland blades was such that it permitted a degree of shaping by cold hammering, and that the fragments of meteorite that were turned into blades were quite small and thin to begin with, the entire Greenland blade matter becomes clear.

However, there is a vast difference between the Greenland blades and the King Tut blade.

The King Tut blade is a large, serious, very well made blade, something that without prior knowledge could very well be attributed to a much later time.

I believe that it will eventually be confirmed that this blade is of forge welded construction.
A. G. Maisey is offline   Reply With Quote
Old 8th June 2016, 03:06 PM   #13
Roland_M
Member
 
Roland_M's Avatar
 
Join Date: Aug 2014
Location: Germany
Posts: 525
Default

Quote:
Originally Posted by A. G. Maisey

There can never be any dispute about the cold forging of simple blades from iron, or preferably mild steel, this is a standard blacksmithing technique.

Different Nations, different definitions.

"Work hardening, also known as strain hardening or cold working, is the strengthening of a metal by plastic deformation. This strengthening occurs because of dislocation movements and dislocation generation within the crystal structure of the material."

I apologize, but in Germany this is per definition no forging in the narrower sense.

Quote:
Originally Posted by A. G. Maisey
"The King Tut blade is a large, serious, very well made blade, something that without prior knowledge could very well be attributed to a much later time. "
The grave of King Tut was probably already opened in the classical antiquity period and some grave goods from other graves were added to King Tuts grave goods. With the aim, to prevent it from stealing. This would explain the total chaos in King Tuts grave. So it is possible, that the dagger was made long after King Tuts death.


Roland

Last edited by Roland_M; 8th June 2016 at 03:33 PM.
Roland_M is offline   Reply With Quote
Old 8th June 2016, 10:26 PM   #14
David
Keris forum moderator
 
David's Avatar
 
Join Date: Aug 2006
Location: Nova Scotia
Posts: 7,261
Default

Quote:
Originally Posted by Roland_M
The grave of King Tut was probably already opened in the classical antiquity period and some grave goods from other graves were added to King Tuts grave goods. With the aim, to prevent it from stealing. This would explain the total chaos in King Tuts grave. So it is possible, that the dagger was made long after King Tuts death.
I have never seen any information that confirms that items had been added to King Tut's tomb in these break-in, but most archeologists seem to believe that these break-in happened very soon after the initial sealing of the tomb. The general idea when the tombs of kings are broken into is to actually rob from the tomb, not add to it. What's more, this dagger was actually found not just inside the tomb, but inside Tut's sarcophagus. I am having a hard time imagining who might break into a king's tomb at a later date and plant a very valuable dagger not just in the tomb, but actually hidden inside the folds of fabric that the mummy was wrapped in. Occam Razor seems to suggest that the dagger was there from the very beginning.
"His tomb was robbed at least twice in antiquity, but based on the items taken (including perishable oils and perfumes) and the evidence of restoration of the tomb after the intrusions, it seems clear that these robberies took place within several months at most of the initial burial.

Eventually, the location of the tomb was lost because it had come to be buried by stone chips from subsequent tombs, either dumped there or washed there by floods. In the years that followed, some huts for workers were built over the tomb entrance, clearly without anyone's knowing what lay beneath. When at the end of the 20th Dynasty the Valley of the Kings burial sites were systematically dismantled, Tutankhamun's tomb was overlooked, presumably because knowledge of it had been lost, and his name may have been forgotten."


As to whether this dagger was made by the Egyptians or a gift from another civilization, it should be considered that the reason we are hearing about this now is because the latest XRF measurements have identified the make-up of the blade to be identical to the make-up of a meteorite found near the Kharga Oasis, not far from the tomb itself. I suppose it is possible that by coincidence a meteorite that fell in a distant land was the source material for this blade, but again, Occam's Razor would suggest that the likeliest answer is that the dagger was made near when that material was found.
David is offline   Reply With Quote
Old 8th June 2016, 03:23 PM   #15
Timo Nieminen
Member
 
Timo Nieminen's Avatar
 
Join Date: Mar 2012
Posts: 422
Default

Quote:
Originally Posted by A. G. Maisey
The King Tut blade is a large, serious, very well made blade, something that without prior knowledge could very well be attributed to a much later time.

I believe that it will eventually be confirmed that this blade is of forge welded construction.
That would be no surprise. Given that it's hot-forged*, it's not a big step to welding. Either folded and welded for homogeneity, or separate pieces welded together to get a larger piece of iron. Or both.

* The best information I've been able to find is that it isn't cold-forged (unlike the other iron objects from the tomb).
Timo Nieminen is offline   Reply With Quote
Old 8th June 2016, 03:51 PM   #16
A. G. Maisey
Member
 
Join Date: May 2006
Posts: 7,133
Default

Timo, have you ever tried to forge weld?

I was taught basic blacksmithing by a man who came out of his apprenticeship in 1947, in a NSW country town. He was one of the last traditionally trained smiths in Australia. He taught me to forge weld iron and mild steel.

At that time (1980) I was unable to find anybody in the greater Sydney area who could teach me to forge weld iron with high carbon steel or with nickel. This included the very few tech college teachers who were teaching blacksmithing at that time.

In the 19th century text books that I was using back then, mention was made that in most towns in England where there were several smiths, one smith was usually recognised as the welding specialist and he accepted welding jobs from the other smiths in his area.

Forge welding in coke or charcoal is not at all easy.

It took me about 12 months of trial and error to teach myself to weld iron + nickel + high carbon steel , in the forge. Subsequently I taught a number of other people.

The step from ordinary forge work to welding in the forge is a very big step, and the step from welding iron to welding materials with different weld temperatures is immense.

To weld meteoritic material in the forge is a step further again.

These days most people who can forge weld are using gas forges, and this welding is about as difficult as making a chocolate cake, but welding in a traditional forge is not something that is easy to do.
A. G. Maisey is offline   Reply With Quote
Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT +1. The time now is 10:06 AM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2025, vBulletin Solutions Inc.
Posts are regarded as being copyrighted by their authors and the act of posting material is deemed to be a granting of an irrevocable nonexclusive license for display here.